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X-ray computed tomography (XCT) continues to be a primary means of defining flaw populations in
fatigue-critical components fabricated by additive manufacturing (AM), and therefore, defining the
detection capability of XCT is necessary. Stochastic flaw populations from four samples from a laser
powder bed fusion (L-BPF) build of Ti-6Al-4V fatigue specimens were interrogated with XCT scans at
various voxel sizes, followed by automated optical serial sectioning (AOSS) with a Robo-Met.3D system as a
higher fidelity technique for comparison. Data sets were registered and processed with an automated defect
recognition (ADR) algorithm. Comparison of the detected flaw populations showed a two to three orders of
magnitude greater quantity in the AOSS data, with significant improvement in the XCT detection rate with
refinement of voxel size. Although refined voxel size XCT scans revealed additional flaws, detection of 90%
of the ‘‘ground truth’’ flaws present in the AOSS data was not achieved until flaws reached a size of 7-17
times the voxel size of the XCT scan. The need for additional study of targeted flaw sizes to validate and
refine these predictions was identified.
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1. Introduction

Additive manufacturing (AM) of metallic components has
become a widely adopted technology over the past decade (Ref
1-3). The additional design space, potential for novel perfor-
mance enhancements and supply chain advantages offered by
techniques such as laser powder bed fusion (L-PBF) AM have
garnered much interest from the aerospace, maritime and
defense industries. Adoption of its widespread use for critical
applications has been slowed, however, by uncertainty about
the flaws created by the process, and the impact of those flaws
(Ref 4, 5). Significant work has gone into understanding the
foundational process–structure–property relationships created

by various metal AM processes (Ref 6). For Ti-6Al-4V, the
alloy of interest for this study, the direct effect of processing
defects on resultant mechanical properties has been well
investigated (Ref 7), with several x-ray-based techniques (Ref
8) including time-lapse observation (Ref 9). Mower and Long
found that L-PBF Ti-6Al-4V, tested in the as-deposited state,
yielded significantly lower fatigue strength than wrought
material, due to the presence of surface, near-surface and
internal flaws (Ref 10). Hot isostatic pressing (HIP) was
identified as a means of decreasing the variability in fatigue life
of Ti-6Al-4V (Ref 11-13), though not without remaining
outliers (Ref 14).

Detection of defects, then, being understood as a critical
aspect of qualifying L-PBF components (Ref 15), would
typically require some method(s) of nondestructive testing
(NDT). Given the digital nature of the AM process, in situ
sensing for the detection of processing flaws—a non-traditional
application of NDT principles—has been the subject of much
research in recent years (Ref 16-19), in an effort to accelerate
the qualification process. In situ inspection and qualification is
desirable for sustained adoption of AM, but is still in a
developmental phase. More traditional NDT technologies like
x-ray computed tomography (XCT) continue to be relied upon
as ‘‘ground truth’’ verification of flaw populations in AM
components (Ref 20).

The need to quantify the detection capabilities of nonde-
structive testing (NDT) methods has long been identified [cite
AFRL POD handbook], and the same is true of XCT. There is a
broad knowledge base around the impact that various XCT
technique parameters have on the reconstructed volume (Ref
21), and methods have been developed for quantifying
resolution and contrast discrimination (Ref 22). The capabilities
of XCT and other NDT techniques are also being enhanced
using artificial intelligence and machine learning-based ap-
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proaches (Ref 23-26). The standardized measures of spatial
resolution and contrast discrimination are helpful and needed,
but do not purport to translate directly to detection of flaws of a
given size, which is of critical importance for the use of AM
parts in fatigue-critical applications. Therefore, methods of
verifying the performance of XCT at flaw detection have been
explored. Poudel et al. developed a scheme for classifying
defects as lack of fusion, gas-entrapped porosity or keyhole
porosity based on the morphology revealed in XCT data (Ref
27). Improving the fidelity of the reconstructed XCT data—-
which would yield direct improvements to both the morphol-
ogy resolution of large flaws and the contrast resolution of
smaller flaws—through the use of a deep learning approach
assisted by CAD models and x-ray–material interaction sim-
ulations has also been demonstrated (Ref 28). The effect of a
fractional factorial experiment of XCT acquisition parameters
on image quality has also been studied, along with the
probability of detection of embedded flaws with those various
XCT techniques (Ref 24).

Serial sectioning is another available method for validating
XCT data and has been used successfully in the biological (Ref
29-31) and materials characterization (Ref 32) fields. One
earlier study showed the inability of XCT to detect defects
approximately 200 9 150 9 100 lm located 530 lm below the
surface that were revealed by serial sectioning (Ref 33).
Groeber et al. concluded from limited optical microscopy that
an XCT scan with voxel size 23 lm was not able to detect flaws
below 50 lm, and not able to well represent flaw morphology
below 200 lm (Ref 34). Most closely related to the present
work, Jolley et al. used destructive serial sectioning as a higher
fidelity method against which to compare XCT, showing the
limitations of XCT at revealing the size and morphology of
flaws in a LBPF Ti-6Al-4V sample (Ref 35). Prior work by
some of the current authors demonstrated a similar approach to
using automated optical serial sectioning (AOSS) tools as a
verification method for XCT (Ref 36). Whereas these past
efforts have focused on intense study of defects present in a
single sample, the current work investigates detectability of
flaws in XCT on a broader scale, examining the defect
populations as revealed by AOSS and XCT in multiple L-
PBF samples.

2. Experimental Methods

2.1 Sample Fabrication and Fatigue Testing

Fabrication and fatigue testing details were originally
reported in (Ref 37) and are summarized here. Samples were
fabricated via laser powder bed fusion (L-PBF) on a 3D
Systems ProX 320 using OEM-recommended parameters for
60 lm layers with Grade 23 Ti-6Al-4V virgin (Ref 38). Four
(4) samples originating from different cluster locations of build
C003 were selected at random and remained in the as-deposited
(vice post-HIP) condition to increase the observable flaw
population. Each sample was machined to a diameter of
12.70 mm and a height of 81.80 mm, leaving the sample
identification number intact (Figure 1). As reported in (Ref 37),
other samples from this build were fatigue tested at a maximum
stress level of 827 MPa (120 ksi) and a stress ratio of
R = + 0.1 by Element Materials Technology (Fairfield, OH).

2.2 X-ray Computed Tomography and Automated Optical
Serial Sectioning

X-ray computed tomography was performed on the samples
with two different commercial XCT systems: a Waygate
Technologies v|tome|x L 300 and v|tome|x M 300, each using
a 300 kV micro-focus x-ray source. Scans were acquired at a
range of voxel sizes in order to develop an understanding of the
relationship between voxel size and flaw detectability. The first
voxel size, 43 lm, allowed for the entirety of each sample to be
captured in one field of view of the XCT system digital
detector, representative of how industry might minimize scan
time and cost. Two of the samples—numbers 3463 and
3481—were selected for XCT interrogation at higher resolution
voxel sizes, 12 lm and 25 lm. The 12 lm voxel size was
chosen as the smallest possible which still allowed for sufficient
power output from the x-ray source to penetrate the sample, and
the 25 lm voxel size was chosen as approximately double the
12 lm.

Automated optical serial sectioning (AOSS) was performed
on the samples using a UES Robo-Met.3D� system, which
sequentially grinds and polishes away layers of material with
micron level accuracy followed by optical microscope imaging.
To prepare the samples, a portion of the machined cylinder
containing the sample label was removed and mounted in
epoxy along with three (3) titanium spheres to be used for
image registration and material removal rate calculation
(�5 lm/section). An optical microscope using a 5X objective
captured a montage of stitched images of the entire polished
surface, the montage having an XY resolution of � 2 lm/pixel.
A summary of the XCT and AOSS parameters for each of the
samples is shown in Table 1.

2.3 Data Registration, Flaw Identification and Flaw
Validation

To reduce misalignment errors and raw data size, AOSS
images were cropped by a consistent X and Y distance relative
to the centroids of the co-mounted spheres. Material removal

Fig. 1 Photographs of the L-PBF build plate with fatigue specimen
clusters and of one of the samples selected for this work, machined
to final dimensions with the specimen identification intact on its top
face
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per slice was calculated by measuring the apparent sphere
diameters in a given image relative to the true sphere diameters,
with the average from the three spheres set as the raw Z
resolution of the AOSS image stack. To ensure isometric
resolution of the 3D AOSS image stack, a bi-cubic interpola-
tion was performed on the voxel values to up-sample the data to
match the native XY resolution shown in Table 1. The XCT and
AOSS data sets were then registered to the same coordinate
system using Volume Graphics VGStudio MAX� software as
described in (Ref 36). This registration process involved first
manually aligning the data sets as closely as possible and then
using the ‘‘Best fit registration’’ tool in VGStudio MAX�.

It should be noted here that edge rounding of the fiducial
spheres during the metallographic serial sectioning process
could have contributed to error in calculation of the sphere
centroids and measurement of the sphere diameters. One recent
study using a similar AOSS process with Ti-6Al-4V fiducial
spheres observed that although the most extreme effect of edge
rounding to occur after restarts in the AOSS process, with
instantaneous (difference of one slice) changes in diameter of
typically 2.5-5.5% (Ref 39). Although no measurement of
sphere edge rounding or compensation thereto was performed
in this work, if a similar degree of edge rounding occurred
during restarts to the AOSS process, this would result in—for
an example slice from sample 3463—a 35-76 lm change in the
Z-step calculation. For this sample, the largest calculated Z-step
between AOSS slices was 7.56 lm, and so it would seem that
the same degree of edge rounding due to restarts was not
observed in this study, perhaps due to a difference in
metallographic procedure. Due to the small Z-dimension of
material that was sectioned, the full diameter of the spheres
(9.52 mm) was not exposed in the AOSS slices, and so it is
difficult to comment on the size of the error caused by sphere
edge rounding during the steady-state regimes of the AOSS
process. However, as the Z-step calculations relied on the
relative slice-to-slice diameter change in the spheres, assuming
that the degree of edge rounding was consistent from slice-to-
slice, the calculations would not have been significantly
impacted.

Flaw identification in the XCT and AOSS data sets made use
of an in-house automated defect recognition (ADR) algorithm
developed in MATLAB (Ref 40). A priori review of the data
sets and iteration were used to finalize algorithm parameters,
including the quantity and size of convolution kernels, the
standard deviation threshold for flagging anomalies, and the

minimum cluster size. Attributes for each flaw cluster were
tabulated, and images of each flaw were reviewed manually,
resulting in classification of each flaw as a true positive (real
flaw) or false positive (not real flaw).

3. Results and Discussion

3.1 Microstructure and Fatigue Life

Figure 2 shows optical micrographs of as-deposited witness
coupon material from the build plate. A lamellar structure of a¢
in prior b grains is evident, with the scale of b grains on the
order of 100-200 lm, consistent with other observations (Ref
12). Microstructural analysis and fatigue results of the post-HIP
fatigue tested specimens were provided in (Ref 37) and
summarized here. After HIP, the microstructure was converted
from martensitic a¢ to a + b with an average alpha lath width of
1.92 ± 0.21 lm and no apparent texturing of the prior b grains.
As all of the specimens were tested at the same conditions, a
traditional S-N curve was not developed, but rather a box-and-
whisker plot in terms of log10 cycles to failure, with a mean of
5.83, median of 6.06 and variance of 0.29.

3.2 Detected Flaws in XCT and AOSS Data Sets

An increase in flaw detectability with refinement of the XCT
voxel size was readily observed. Figure 3 illustrates this with a
comparison of registered slices of XCT and AOSS data for
sample 3463, and Figure 4 shows the corresponding ADR
output. The two largest flaws are clearly visible in the slice in
Figure 3 in all XCT data, with additional flaws not
detectable until the XCT voxel size reduces to 12 lm. Three
of the four additionally resolved flaws have a corresponding
match in the AOSS data, with higher magnification images of a
select flaw showing similar morphology and size. The fourth
flaw that was not matched (an open circle in Figure 3d) is due
to registration error—the flaw is present at a different z-height
of the AOSS data. A two orders of magnitude greater quantity
of flaws were detected in the AOSS data (Figure 4).

Histograms comparing the validated flaw populations in the
AOSS (red) and XCT (blue) data as a function of the volume
equivalent spherical diameter (ESD)—selected due to the
approximately spherical morphology of many stochastic
flaws—are shown in Figure 5. The solid black line represents
the percentage of AOSS flaws detected in the XCT data sets for

Table 1 Select parameters from XCT and AOSS data acquisition on the four (4) samples

Sample 3421 3439 3463 3481

Acquired XCT data
43 lm 4 4 4 4

25 lm … … 4 4

12 lm … … 4 4

XCT parameters Voltage (kV) Amperage (lA) Images Filter
43 lm 260 160 800 0.5 mm Sn (source),

0.5 mm Cu (detector)25 lm 260 95 2x 800
12 lm 200 70 3x 1500 0.5 mm Sn (source)
AOSS parameters
Material removal (lm) 2100 2100 2000 1300
XY resolution (lm) 2.09 2.09 1.78 2.09

Journal of Materials Engineering and Performance



a given histogram bin, and the dashed black line is a sigmoidal
fit of the relationship between detection percentage and flaw
size. The limited quantity of flaws above 200 lm and the
mischaracterization of flaw size in some cases by XCT
(discussed below) prevented a smooth sigmoidal fit.

The 43 lm XCT data show no detection of flaws below an
ESD of 150 lm. For samples 3421 and 3439, this included 0
detected flaws compared to over 2000 in the corresponding
AOSS data, all at an ESD of £ 119 lm. This would support
the radiographic principle that features < 3 voxels across

Fig. 2 Optical micrographs of as-deposited witness material from the L-PBF build at (a) lower and (b) higher magnification, both revealing an
a¢ microstructure in prior b grains, with no particular texturing of the b grains

Fig. 3 Comparison of a registered slice of XCT and AOSS data from sample 3463. (a) 43 lm voxel XCT data; (b) 25 lm voxel XCT data and
(c) 12 lm voxel XCT data with arrows indicating the corresponding flaw in (d) 1.8 lm voxel AOSS data
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cannot be reliably detected by XCT. A total of four flaws were
detected in the 43 lm XCT data for sample 3463; two of 150-
200 lm and two 450-550 lm ESD. The smaller two flaws
matched the histogram bin size for four corresponding flaws in
the AOSS data, whereas the 450-550 lm flaws did not size
match with flaws in the AOSS data. Slice imagery revealed that
the 450-550 lm diameter XCT flaws corresponded to two 300-
400 lm AOSS flaws; the histogram reports a 0% XCT
detection rate for this bin size. Thus, XCT may artificially
inflate flaw sizes, presumably due to coarser resolution and the
partial volume effect. For sample 3481, one flaw of ESD
171 lm was detected at 43 lm, compared to over 1900 flaws in
the AOSS data.

Although the histogram for 43 lm XCT data portrays the
90% detection rate as being first achieved at an ESD of 250-
300 lm, this bin is empty for the AOSS data, so no detection
rate data are available here. In light of the mischaracterization
of flaw sizes by the XCT data discussed above, the XCT
histogram detection rate would first reach 90% for an AOSS
flaw diameter of 300 lm, or approximately 7 times the voxel
size. As there is only (1) AOSS flaw at this size, however, it is
uncertain if this sevenfold relationship would hold true for a
larger population of flaws. A 20% histogram detection rate for
100-150 lm ESD flaws was observed in the 25 lm XCT data
(compared to 0% for 43 lm XCT), and a 90% detection rate
was first achieved for a flaw size of just over 200 lm, or about
8 times the voxel size. For the 25 lm XCT data—as with the
43 lm data—the small quantity of flaws at this size scale
makes it difficult to predict the applicability of this relationship
across larger flaw populations.

For the 12 lm voxel XCT data, just under 30 flaws in the 1-
50 lm ESD range were detected, the smallest of which was

44 lm in diameter, although the histogram detection rate in this
1-50 lm diameter size range was still small at 0.3%. Over 130
flaws 50-100 lm in ESD were found in the XCT data for a
detection rate of 6%, and an 80% detection rate was achieved in
the range of 150-200 lm. However, in the 200-250 lm size
range, more flaws were detected in the XCT data than in the
AOSS data (detection rate > 100%). One of the corresponding
AOSS flaws was also 200-250 lm, but the others were found in
the 100-150 lm and 150-200 lm ESD bins of the histogram.
Therefore, a 90% histogram detection rate for the 12 lm XCT
data would first be achieved for a true flaw ESD of 150-
200 lm, which is 12-17 times the voxel size. This is a
degradation in flaw detectability as a function of voxel size
compared to the 43 lm (7 times) and 25 lm (8 times) XCT
data, possibly due to a decrease in contrast resolution from the
limited x-ray signal used to acquire the 12 lm XCT scans.

This approach to assessing the detection limits of XCT is
dependent upon accurate sizing of flaws by the ADR algorithm.
Although direct accuracy statements about the ADR flaw sizing
cannot be made, a corroboration of some of the flaw sizes was
performed using the porosity analysis module in VGStudio
MAX� software. The VGDefX algorithm, using deviation
auto-threshold mode, deviation factor of 0.00, medium noise
reduction, general probability criterion and a probability
threshold of 0.90, was applied to the 43 lm and 25 lm XCT
data sets for sample 3463, resulting in 15 flaws matched (4 of
which were present in both data sets) with those identified by
the MATLAB ADR algorithm. Flaw ESD�s ranged from 104 to
517 lm for ADR and 108 to 497 lm for VG, matched flaws
differing by 2.3-32.9%, with eight (8) of the VG flaws being
smaller than their MATLAB ADR match, and the other seven
(7) being larger.

Fig. 4 Validated flaws from ADR output for sample 3463, comparing the (a) 43 lm, (b) 25 lm and (c) 12 lm voxel size XCT data with the
(d) 1.8 lm voxel size AOSS data
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Magnitude of the ESD differences formed into two clusters,
one for flaws 100-200 lm and one for flaws 450-525 lm, with
an average difference of 20.7 lm for the smaller 11 flaws and
46.8 lm for the larger four. These larger flaws were all sized as
smaller by VG compared to the ADR, the largest ESD
difference being 76.8 lm, for a 479 lm ADR flaw sized at
402 lm by VG. This finding supports the observation of
inflation of XCT flaw size for larger flaws as discussed above.
Thus, for flaws £ 200 lm, the true histogram bin is expected
to be less than ± 0.5 bins of that reported, and for flaws >
400 lm, the true histogram bin is expected to be within + 0/-2
bins of that reported. Although these findings could potentially
improve the voxelized detection rates reported above, addi-
tional flaw populations should be studied before such conclu-
sions are drawn.

4. Conclusion

The detectability of features in radiographic data is not
simply a factor of spatial resolution, but rather a complicated
function of many variables affecting both the contrast resolu-
tion and spatial resolution of the imagery. However, the voxel
size is inarguably at the foundation of the spatial resolution of a
given XCT data set, and therefore, the present results are
discussed in relation to that acquisition parameter in order to
develop a relationship between voxel size and defect detectabil-

ity. This work supports the rule that the smallest flaw that can
be resolved in a given XCT data set is 3 times the voxel size;
however, the detection rate at this size is low, less than 1% for
the flaw populations studied here. The historically relevant 90%
detection rate was achieved between a broad range of 7-17
times the voxel size and varied with the voxel size of the
acquired XCT scan.

Flaw detectability rates for the 43 lm and 25 lm XCT data
are difficult to broadly apply due to the low (< 100) quantity of
flaws of ESD £ 150 lm present in the L-PBF samples—the
size where those XCT data sets began to resolve flaws. Future
work should target samples with a statistically significant
population of flaws ‡ 6 times the voxel size of the XCT data
in order to substantiate detection rates calculated here. Estab-
lishment of critical flaw sizes for L-PBF components could
assist in quantifying the relevance of higher resolution in both
XCT and the AOSS. Accordingly, poorer contrast discrimina-
tion in the 12 lm XCT scan is thought to be responsible for its
degraded detection rate per voxel size relative to the other XCT
scans. Relationship between established measurements of XCT
image data quality—such as the modulation transfer function
(MTF), contrast discrimination function (CDF) (Ref 22) and/or
contrast-detail-dose diagram (CDD) (Ref 21)—and the voxel
size detection rate dependency should be studied to yield
practical guidance for the application of XCT.

Fig. 5 Histograms comparing the validated flaw populations between the AOSS (red) and XCT (blue) data sets for all samples, separated by
XCT voxel size. The thick black line represents the percentage of AOSS flaws (ground truth) detected in the XCT data sets, and the dashed
black line is a sigmoidal fit of the relationship between detection percentage and flaw size, expressed as spherical equivalent diameter (lm)
(Color figure online)
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